モデルカリキュラムの改訂にあわせた、待望の第2版。
1章 データサイエンス基礎
1.1 データ駆動型社会とデータ分析の進め方 (久野遼平)
1.2 データの記述 (宿久 洋)
1.3 データの可視化 (宿久 洋・久野遼平)
1.4 データ分析の手法 (原 尚幸)
1.5 数学基礎 (清 智也)
2章 データエンジニアリング基礎
2.1 ビッグデータとデータエンジニアリング (内田誠一)
2.2 データ表現、プログラミング基礎、アルゴリズム基礎 (辻 真吾)
2.3 データ収集と加工、データベース (森畑明昌)
2.4 ITセキュリティ (宮地充子)
3章 AI基礎
3.1 AIと社会 (松原 仁)
3.2 機械学習の基礎と予測手法 (赤穂昭太郎)
3.3 深層学習の基礎 (今泉允聡)
3.4 ロボット、認識、言語 (高野 渉)
3.5 生成AI(岡崎 直観)